In day to day to life, we often sometimes say that something grows exponentially. Say we invest some money somewhere, it grows exponentially every year. Now growing exponentially can mean money became double, triple etc
For example, 2start color blueD, 2, end color blueD raised to the 4thstart color greenE, 4, end color greenE, start superscript, t, h, end superscript power equals 16start color goldD, 16, end color goldD. This is expressed by the exponential equation 24=16start color blueD, 2, end color blueD, start superscript, start color greenE, 4, end color greenE, end superscript, equals, start color goldD, 16, end color goldD.
2*2*2*2 = 16
What if the opposite happens. Opposite of exponential growth is logarithmic growth.
In plain terms, if we keep multiplying something with X times will be exponential and if we keep dividing something X times will be logarithmic.
24=16⟺log2(16)=4
Both equations describe the same relationship between the numbers 2start color blueD, 2, end color blueD, 4start color greenE, 4, end color greenE, and 16start color goldD, 16, end color goldD, where 2start color blueD, 2, end color blueD is the base, 4start color greenE, 4, end color greenE is the exponent, and 16start color goldD, 16, end color goldD is the power.
The difference is that while the exponential form isolates the power, 16start color goldD, 16, end color goldD, the logarithmic form isolates the exponent, 4start color greenD, 4, end color greenD.
Here are more examples of equivalent logarithmic and exponential equations.
Logarithmic form | | Exponential form |
log2(8)=3log, start subscript, start color blueD, 2, end color blueD, end subscript, left parenthesis, start color goldD, 8, end color goldD, right parenthesis, equals, start color greenD, 3, end color greenD | ⟺ | 23=8start color blueD, 2, end color blueD, start superscript, start color greenD, 3, end color greenD, end superscript, equals, start color goldD, 8, end color goldD |
log3(81)=4log, start subscript, start color blueD, 3, end color blueD, end subscript, left parenthesis, start color goldD, 81, end color goldD, right parenthesis, equals, start color greenD, 4, end color greenD | ⟺ | 34=81start color blueD, 3, end color blueD, start superscript, start color greenD, 4, end color greenD, end superscript, equals, start color goldD, 81, end color goldD |
log5(25)=2log, start subscript, start color blueD, 5, end color blueD, end subscript, left parenthesis, start color goldD, 25, end color goldD, right parenthesis, equals, start color greenD, 2, end color greenD | ⟺ | 52=25start color blueD, 5, end color blueD, start superscript, start color greenD, 2, end color greenD, end superscript, equals, start color goldD, 25, end color goldD |
Definition of a logarithm
Generalizing the examples above leads us to the formal definition of a logarithm.
Both equations describe the same relationship between astart color goldD, a, end color goldD, bstart color blueD, b, end color blueD, and cstart color greenE, c, end color greenE:
bstart color blueD, b, end color blueD is the basestart color blueD, b, a, s, e, end color blueD,
cstart color greenE, c, end color greenE is the exponentstart color greenE, e, x, p, o, n, e, n, t, end color greenE, and
astart color goldD, a, end color goldD is the powerstart color goldD, p, o, w, e, r, end color goldD.
log, start subscript, start color blueD, 2, end color blueD, end subscript, left parenthesis, start color goldD, 16, end color goldD, right parenthesis, equals, start color greenE, 4, end color greenE
No comments:
Post a Comment